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Introduction

The purpose of this 
presentation is to 
introduce the logical 
and arithmetic 
operators and simple 
matrix functions of 
Minitab® –a well-
known software 
package for teaching 
statistics- as a 
computer-aid to teach 
Principal Components 
Analysis (PCA) to 
graduate students in 
the field of Education.
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PCA, originally proposed by Pearson (1901) is a 
mathematical technique –a vector space transform- that 
has its roots in linear algebra and in statistics.

Its main purpose is to reduce a correlated 
multidimensional data set to an uncorrelated lower 
dimensional space with maximum variance. 

PCA concepts can be a roadblock for non-mathematical 
oriented students, since statistical definitions (i.e., 
variance-covariance, correlation) need to be connected to 
matrix algebra (eigenvectors of a variance-covariance 
matrix) and to graphical vector representation (including 
matrix rotation).
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Algebraic Interpretation – 1D

• out well along the line
• Choose a line that fits the data so the points are 

spread

• Choose a line that fits the data so the points are spread 
out well along the line

• Given m points in a n dimensional space, for large n, how does 
one project on to a low dimensional space while preserving 
broad trends in the data and allowing it to be visualized?
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A sample of n observations in the 2-D space 

Goal: to account for the variation in a sample
in as few variables as possible, to some accuracy 6@JCurts/2009



Formally, minimize sum of squares of 
distances to the line.

Why sum of squares? 
Because it allows fast 
minimization, assuming the 
line passes through 0

Minimizing sum of squares of 
distances to the line is the 
same as maximizing the sum 
of squares of the projections 
on that line, thanks to 
Pythagoras.
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Y1 and Y2 are new coordinates. 
•Y1 represents the direction where the data values have the largest uncertainty. 
•Y2 is perpendicular to Y1. 

To find Y1 and Y2, we need to make transformation from X1 and X2. To simplify the 
discussion, we move the origin to              and redefine the (X1,X2) coordinate as

x1 = X1 - , x2 = X2 - , so that the origin is (0,0).

The relationship is illustrated in the following graph. We would like to present the data of 
a given lab, p = (x1,x2) in terms of p = (y1,y2). 

From basic geometry relations, we see:
y1 = (cosθ) x1 + (sinθ) x2
y2 = (-sinθ) x1 + (cosθ) x2 y2

x1

x2

1x 2x

θ

y1p

The angle θ is determined 
so that the observations 
along the Y1 axis has the 
largest variability. 
But  HOW?

1 2( , )x x
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For any given value of theta, then, it is a simple matter to work out the values of Y1 for 
each of our twenty observations. When θ is 5 degrees, for example, the calculations are:

New
Variable

Z1            Z2       Y1
1.90        0.47     1.94
0.99        0.85     1.06
1.22        0.09     1.22
0.54       -0.68     0.47
0.31        0.47     0.35
0.08       -1.25    -0.03

-0.15       -0.30    -0.17
-0.60        0.09    -0.59
-1.06       -1.63    -1.20
-1.29       -1.25    -1.39
-1.74       -1.63    -1.88
-1.52       -1.06    -1.60
0.76        0.47      0.80
1.90        2.57      2.12
0.31        0.28      0.33

-0.38       -0.10    -0.38
-0.15        0.66     -0.09
-0.15        0.85     -0.07
-0.38        0.66     -0.32
-0.60        0.47     -0.56

Mean (X1) = 7.65; VAR (X1) = 19.23
Mean (Z1) = Mean (Z2) = 0; 
Variance (Z1) = Variance (Z2) = 1

VAR (Y1) = (cosθ) x1 + (sinθ) x2 = 1.12

Note that each of the original variables has a variance
of 1.0, but the variance of the new axis is 1.12, which 
constitutes more than half of the total variance for the 
entire dataset (e.g., 1.12/2.00 or 56%). 
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Each value of theta will yield 
a different set of scores on 
Y1, and will also result in 
distinct values for the 
variance term. If we calculate 
transformed values and 
variances for different values 
of theta, we can compare the 
variance of the new axis to 
the total for our dataset.

Note that as we increase the 
angle, the new variable 
accounts for an increasing 
fraction of total variance, 
until 45 degrees, and then 
declines; by the time theta is 
90 degrees, the new axis is 
equivalent to X2, and, not 
surprisingly, its proportion of 
variance is back to 1.00 or 
50.0%.

Theta    Var (Y1)        Proportion
--------------------------------------------
5           1.121             56.0%
10         1.238             61.9%
15         1.348             67.4%
20         1.447             72.4%
25         1.533             76.7%
30         1.603             80.1%
35         1.654             82.7%
40         1.685             84.3%
45         1.696             84.8%
50         1.685             84.3%
55         1.654             82.7%
60         1.603             80.1%
65         1.533             76.7%
70         1.447             72.4%
75         1.348             67.4%
80         1.238             61.9%
85         1.121             56.0%
90         1.000             50.0%
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Theta Variance of
X* Proportion
5 1.121 56.0%
10 1.238 61.9%
15 1.348 67.4%
20 1.447 72.4%
25 1.533 76.7%
30 1.603 80.1%
35 1.654 82.7%
40 1.685 84.3%
45 1.696 84.8%
50 1.685 84.3%
55 1.654 82.7%
60 1.603 80.1%
65 1.533 76.7%
70 1.447 72.4%
75 1.348 67.4%
80 1.238 61.9%
85 1.121 56.0%
90 1.000 50.0%
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The transformation from (x1,x2) to (y1,y2) results 
several nice properties

1. The variability along y1 is largest. 
2. Y1 and y2 are uncorrelated, that is, orthogonal. 
3. The confidence region based on (y1,y2) is easy to 

construct, and provide useful interpretations of the two 
sample plots.

Questions remain unanswered are
1. How to determine the angle θ so that the variability of 

observations along the y1 axis is maximized?
2. How to construct the ellipse for confidence region with 

different levels of confidences?
3. How to interpret the two-sample plots?
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NOTE: X is bivariate , so is Y, and
V(X) =                                                  ,     V(Y) = A’V(X)A =

λ1 and λ2 are called the eigen values. Which are the solutions of 
And, V(Y1) = λ1 , V(Y2) = λ2, Correlation between Y1 and Y2 = 0. 

1

2

0
0
λ

λ
 
 
 

1 1 2

1 2 2

( ) ( , )
( , ) ( )

V x Cov x x
Cov x x V x

 
 
 

( ) 0V X Iλ− =

How to determine the Y1 and Y2 axis so that the variability of   
observations along the Y1 axis is maximized and Y2 is orthogonal to Y1?

Rewrite  the linear relation between (Y1,Y2) and (x1,x2) in matrix 
notation:
Y1 = (cosθ) x1 + (sinθ) x2
Y2 = (-sinθ) x1 + (cosθ) x2

'
1 1 2 1 1

'
2 1 2 2 2

(cos ) (sin ) cos sin
( sin ) (cos ) sin cos

y x x x A X
Y AX

y x x x A X
θ θ θ θ
θ θ θ θ

+        
= = = − = =       − +         
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λ1 and λ2 are called the eigen values. Which are the solutions of 
And, V(Y1) = λ1 , V(Y2) = λ2, Correlation between Y1 and Y2 = 0. 

The angle θ = if                    

when  σ1 = σ2 , θ = 45o    The angle θ =

Note the angle depends on the correlation between X1 and X2 , as well as, on the 
variances of X1 and X2, respectively. 
• When ρ is close to zero, the angle is also close to zero. If V(X1) and V(X2) are 
close, then, the scatter plots are scattered like a circle. That is, there is no clear 
major principal component.
•When ρ is close to zero and V(X1) is much larger than V(X2), then, the angle will 
be close to zero, and the data points are likely to be parallel to the X-axis. On the 
other hand, if V(X1) is much smaller than V(X2), the angle will be close to 900, and 
the data points will be more likely parallel to the Y-axis. 


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

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Consider, now, we actually observe the following two sample data:

11 21

12 22

13 23

1 2n n

x x
x x
x x

x x

 
 
 
 
 
 
  

 

The sample means are given by 

The sample variance-covariance matrix is given 
by                2

1 1 2
2

1 2 2

s rs s
rs s s

 
 
 

r is the Pearson’s correlation coefficient, and S2 is the 
sample variance. S is the sample standard deviation.

1

2

x
x

 
 
 

V(Y) is the solution of 

The solutions for λ are given by 

ˆ( )V X =

ˆ( ) 0V X Iλ− =

2 2 2 2 2 2 2 2
1 2 1 2 1 2( ) ( ) 4 (1 )

2
s s s s r s s+ ± + − −

NOTE: V(Y1) + V(Y2) = λ1+λ2 = s1
2 + s2

2 = V(X1) + V(X2)@JCurts/2009
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Using the sample data, the angle is estimated by 

θ  =
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Correlation and Covariance Matrix
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1 2( , )x x

y2

x1

x2

1 2( , )x x

1x 2x

θ

y1
p
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Pearson correlation of C14 and C15 = -0.000
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Thanks…………………….
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