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Introduction

The purpose of this
presentation is to
introduce the logical
and arithmetic
operators and simple
matrix functions of
Minitab® —a well-
known software
package for teaching
statistics- as a
computer-aid to teach
Principal Components
Analysis (PCA) to
graduate students in
the field of Education.




PCA, originally proposed by Pearson (1901) is a
mathematical technique —a vector space transform- that
has its roots in linear algebra and in statistics.

Its main purpose is to reduce a correlated
multidimensional data set to an uncorrelated lower
dimensional space with maximum variance.

PCA concepts can be a roadblock for non-mathematical
oriented students, since statistical definitions (i.e.,
variance-covariance, correlation) need to be connected to
matrix algebra (eigenvectors of a variance-covariance
matrix) and to graphical vector representation (including
matrix rotation).
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Given m points in a n dimensional space, for large n, how does
one project on to a low dimensional space while preserving
broad trends in the data and allowing it to be visualized?
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A sample of n observations in the 2-D space

Bivariate Observations
Variance X1 = 20.3, Variance X2 = 24.1
Covaraiance (¥1,X2) =15.6
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Draw scatterplots

to account for the variation in a sample
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in as few variables as possible, o some accuracy



Formally, minimize sum of squares of
distances to the line.

-
-
Why sum of squares?
Because it allows fast -
minimization, assuming the
line passes through 0
Minimizing sum of squares of ’

distances to the line is the /
same as maximizing the sum

of squares of the projections /
on that line, thanks to ®

Pythagoras.
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Y1 and Y2 are new coordinates.
*Y1 represents the direction where the data values have the largest uncertainty.
*Y2 is perpendicular to Y1.

To find Y1 and Y2, we need to make transformation from X1 and X2. To simplify the
discussion, we move the origin to and redefine the (X1,X2) coordinate as

x1=X1-B8 ,x2=X2-B |, so thatthe originis (0,0).

The relationship is illustrated in the following graph. We would like to present the data of
a given lab, p = (x1,x2) in terms of p = (y1,y2).

From basic geometry relations, we see: X2
y1 = (cosf) x1 + (sind) x2 !
y2 = (-sinB) x1 + (cos0) x2 y2 P

A
The angle 0 is determined //\

so that the observations
along the Y1 axis has the 0
largest variability. xt>
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Boxplot of Stack data
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For any given value of theta, then, it is a simple matter to work out the values of Y1 for

each of our twenty observations.

Z1
1.90
0.99
1.22
0.54
0.31
0.08
-0.15
-0.60
-1.06
-1.29
-1.74
-1.52
0.76
1.90
0.31
-0.38
-0.15
-0.15
-0.38
-0.60

Z2
0.47
0.85
0.09

-0.68
0.47
-1.25
-0.30
0.09
-1.63
-1.25
-1.63
-1.06
0.47
2.57
0.28
-0.10
0.66
0.85
0.66
0.47

Y1

1.06
1.22
0.47
0.35
-0.03
-0.17
-0.59
-1.20
-1.39
-1.88
-1.60
0.80
2.12
0.33
-0.38
-0.09
-0.07
-0.32
-0.56

, for example, the calculations are:

Mean (X1) = 7.65; VAR (X1) = 19.23
Mean (Z1) = Mean (Z2) = 0;

(cosO) x1 + (sinB) x2 =

Note that each of the has a

of 1.0, but . which
constitutes more than half of the total variance for the
entire dataset (e.g., 1.12/2.00 or 56%).



Each value of theta will yield
a different set of scores on
Y1, and will also result in
distinct values for the
variance term. If we calculate
transformed values and
variances for different values
of theta, we can compare the
variance of the new axis to
the total for our dataset.

, the new variable
accounts for an increasing
fraction of total variance,
until 45 degrees,

; by the time theta is
90 degrees, the new axis is
equivalent to X2, and, not
surprisingly, its proportion of
variance is back to 1.00 or
50.0%.

Proportion

61.9%
67.4%
72.4%
76.7%
80.1%
82.7%
84.3%

84.3%
82.7%
80.1%
76.7%
72.4%
67.4%
61.9%
56.0%
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Note that this time, the variance term is much smaller than that of the each of the original
variables. But the variances of the two new axes sum to 2.0 -- the total variation in the original
dataset. This is the basic approach of principal components analysis: obtaining linear
combinations of variables into new axes, such that the first one accounts for the largest share of
total variance, the second is orthogonal to the first and accounts for less variance, etc. Several
properties hold for these components@JCurts/2009
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. The variability along y1 is largest.

Y1 and y2 are uncorrelated, that is, orthogonal.

The confidence region based on (y1,y2) is easy to
construct, and provide useful interpretations of the two
sample plots.

. How to determine the angle 6 so that the variability of

observations along the y1 axis is maximized?

How to construct the ellipse for confidence region with
different levels of confidences?

How to interpret the two-sample plots?



How to determine the Y1 and Y2 axis so that the variability of
observations along the Y1 axis is maximized and Y2 is orthogonal to Y17

Rewrite the linear relation between (Y1,Y2) and (x1,x2) in matrix
notation:
Y1 = (cosB) x1 + (sinb) x2
Y2 = (-sinB) x1 + (cos0) x2

¥, (cos @)x, +(sin9)x, cos@ sind || x, AX
V=1""1= =| - = = AX
v, | | (~sin@)x, +(cosH)x, sin@ cos@ || x, A,X

NOTE: X is bivariate , sois Y, and 0
vVxX) = { V(x,) Cov(xl,xz)} . V(Y) = AV(X)A = Foq lj

Cov(x;,x,) Vi(x,)

A, and %, are called the eigen values. Which are the solutions of | MCOREIEI
And, V(Y1) =4, , V(Y2) = A,, Correlation between Y1 and Y2 = 0.



A, and A, are called the eigen values. Which are the solutions of
And, V(Y1) =4, , V(Y2) = A,, Correlation between Y1 and Y2 = 0.

The angle 6 = 2 po,o, if

(.5) arctan(22
O, —0,

when o,=0,,0=45° The angle 0 =

Note the angle depends on the correlation between X1 and X2 , as well as, on the
variances of X1 and X2, respectively.

* When p is close to zero, the angle is also close to zero. If V(X1) and V(X2) are
close, then, the scatter plots are scattered like a circle. That is, there is no clear
major principal component.

*When p is close to zero and V(X1) is much larger than V(X2), then, the angle will
be close to zero, and the data points are likely to be parallel to the X-axis. On the
other hand, if V(X1) is much smaller than V(X2), the angle will be close to 90°, and
the data points will be more likely parallel to the Y-axis.



Consider, now, we actually observe the following two sample data:

X1 Xy

Xy Xy

X3 Xy

ris the Pearson’s correlation coefficient, and S? is the
sample variance. S is the sample standard deviation.

xln XZ n

. | V(X)- M‘ )
V(Y) is the solution of
The solutions for A are given by (512 +S22) n (512 +522)2 _4 1_]/2)@12%2

NOTE: V(Y1) + V(Y2) = A, +), = 8.2 + 5,2 = V(X1) + V(X2)



Using the sample data, the angle is estimated by

2
G (.5) arctan[ ;Slszzl

S =48,




Correlation and Covariance Matrix

= Bivariate Observations
Yariance X 1= 20.3, Variance X2= 24.1
Caovariance (X1,X2) = 156
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Principal Component Analysis: X1, X2
Eigenanaly3is of the Covariance Matrix

Eigenvalue 37.068 6.469
Proportion 0.854 0.146
Cumulative 0.854 1.000

Variable EC1 c2
1 0.663 0.748
x2 0.748 -0.663
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Scatterplot of C14 vs C15
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