Technology in mathematics education:

from meaning to purpose

France Caron
Département de didactique Université de Montréal

If it had been possible to develop graphics first...

... this is how we might have started using computers in mathematics courses.

A fondamental question

What are we trying to achieve with the integration of technology in the teaching and learning of mathematics?

A related question:
What are we trying to achieve with the teaching of mathematics?

A curriculum perspective

Where should we start?

The « safe approach » (Chevallard, 1992):
■ initially limit the role of technology to improving the teaching and learning of traditional mathematical content;

- then look into the implications on mathematical knowledge of using the tool.

Why use CAS ?

Why use CAS?

Because it's there.

Redefining time and space for learning

- Capacity to do more... and more rapidly
\square Tackle more complex mathematical objects
\square Expand visualization and manipulation possibilities
\square Solve more realistic and complex problems
\square Handle rich and large sets of data
\square Perform various experiences, explorations, simulations
- Potential to adapt to individual learning speed

■ In-class and off-class learning environment
■ New window onto « the mathematical world »

Pioneer vision

Delegate technical work to the tool and focus on conceptual work (Heid, 1988)

Typical pioneer CAS learning activities

- Use of multiple representations (symbolic, numerical, graphical) for favoring conceptual understanding
- Exploration and pattern investigation (e.g. derivatives)
- Problem solving which goes beyond what can be done in a reasonable amount of time with pen and paper
- Greater presence of applications (\neq modelling)

Obstacles and issues

- Limits to the benefits of visualization \triangle
- "Fishing behaviour" and other "bypasses" of the task (Artigue, 1997)
- Perceived disappearance of the necessity of validating/proving
- Discrepancies between mathematical knowledge and its computational transposition in a computer (Balacheff, 1994)
- Use of black boxes (Buchberger, 1989; Drijvers, 2000)
- Impossible split between technical and conceptual (Lagrange, 2000)

A simple example 23×45

 A black box? $\begin{array}{r}23 \\ \times 45 \\ \hline 115 \\ 92 \\ \hline 1035\end{array}$- Traditional pen \& paper procedure
$\square(20+3) \times(40+5)=(5 \times 3)+(5 \times 2 \times 10)+(4 \times 10 \times 3)+(4 \times 10 \times 2 \times 10)$

$$
=[(5 \times 3)+(5 \times 2) \times 10]+[(4 \times 3) \times 10+(4 \times 2) \times 100]
$$

\square Numbers as sums of powers of tens
\square Multiplication as a distributive operation
\square Addition \& multiplication as commutative \& associative
\square Products of powers of tens
\square Numbering system

A simple example 23×45

- Slide rule procedure
$(2,3 \times 10) \times(4,5 \times 10)=(2,3 \times 4,5) \times 10 \times 10 \approx 10,3 \times 100=1030$
since $\log (2,3 \times 4,5)=\log (2,3)+\log (4,5) \approx \log (10,3)$
\square Numbers as products of a power of ten
\square Multiplication as associative operation on real numbers
\square Properties of logarithms
\square Interpolation, approximation and order of magnitude

A simple example 23×45

- Calculator procedure $2|3| \times 14|5|=$
\square ?
\square Equality?
Combine the tool and the math to go beyond the tool's limitations.

$(23000+786) \times(45000+974)=$

$$
\begin{aligned}
(23 \times 45) & \times 1000000 \\
& +(23 \times 974+786 \times 45) \times 1000
\end{aligned}
$$

The instrumental approach (Rabardel, 1995)

A slightly more complex example Factor $2 x^{3}-8 x^{2}+5 x+5$

Develop alternate techniques for doing a common task.

\square consolidate network of concepts
\square develop autonomy and creativity with respect to the tool.

A word on assessment

A word on assessment

- Variable place and role of CAS in assessment
\square Status of the new techniques?
- Loss of information and structure in students written records
(Cannon \& Madison, 2003; Ball \& Stacey, 2003)
\square Hard to assess/validate
\square Opportunity to set new norms?

Coming back to the goals

Rethinking the goals

- Mathematical objects do not exist on their own, but have emerged from systems of practices with the development of techniques. (Chevallard, 1999)
- With the tremendous development of computer science, the new description possibilities introduced by mathematics translate into new capacities for action. We are entering the era of modelling. (Bouleau, 2000)
- The main purpose of technology integration in the postsecondary curriculum may well be to allow a contemporary analysis of complex systems (e.g. environment) through the power of mathematical computation and modelling.
This might help move mathematical thinking back into the mainstream of science. (Taylor, 2008)

Rethinking contents and skills

Defining mathematical competencies

(De Terssac, 1996)

Some challenges for the future

- Better address the variety of models
\square Continuous and discrete
- Functions and differential equations
- Sequences and difference equations
- Compartmental models
- Multi-variable, ...
- Geometric models
\square Deterministic and stochastic
- Make use of «new » structures to model
\square Lists, graphs, ...
- Establish dialog with experts from areas of application and other disciplines
- Value reading and writing

Some challenges for the future

- Build bridges between methods of solving
\square Analytic, qualitative and numerical
\square Optimization and simulation
- Consider as program outcome to have students
\square be fluent at using various S/W for modelling and computing (spreadsheets, CAS, numerical S/W, DGS, ...)
\square be able to perform some programming to adapt to the specifics of a problem and develop autonomy in exploring

How modelling is sometimes done in the rest of the world ...

©

Some challenges for the future

- Develop ways of getting insight on equations that can only be solved numerically
\square From analytical and qualitative methods: transferrable key concepts at the heart of the techniques? use on meta-models?
\square From statistical methods for stochastic models
- Open as many black boxes as possible
\square Acknowledge mathematics materialisation with technology
\square Claim back math ownership of technology, or at least part of it
\square Use hard-to-open boxes as opportunities for developing modeling
- Continue to nurture imagination and sense of wonder to encourage looking for patterns, proofs and explanations

... and a donut, please.

Limits to the benefits of visualization

" I don't recall what it was, but I remember we would enter a series of commands and then at the end, a graph would appear. We would then change the commands, and the graph would turn or have another shape. But I don't recall what it was... "

> Helga, student at Polytechnique describing her use of Maple in college linear algebra
\square Attention redirected towards the tool interface.
\square Passive observation :
Seeing does not automatically lead to understanding...
\square Short memory retention.

Favour instrumentation process with the use of the same tool over an extended period of time.

Guide exploration with inquiry questions that lead to look for reasons behind observed behaviour.

Discrepancies between mathematics and its computational transposition

Internal constraints linked to

- Material nature of the tool
- Finite representation of numbers in memory
- Finite number of pixels on the screen
- Programming choices

Control the use of the graphical and numerical registers.

- Algorithms used
- Command syntax
- Modes of representations (Artigue, 1997)

Look for and present to students situations where the tool fails.

> Help develop ways of reconciling tool's output with expected results.

The black box issue

\square Conflict between pragmatic and epistemic considerations
\square Knowledge required to open some of these boxes beyond current math curriculum or the school level at which they are first introduced

* Particularly true with CAS (Artigue, 2002).
\square Consequent
- Ioss of control over tool's output
- feeling of discomfort among many teachers/professors
- potential for students' investigation
- sense of frustration among some students
(Drijvers, 2000)

machine only if you examine it afterwards personally and if you see, by actual use, how it is operated. The machine will be at your disposal, for that nurnnee aftar the lectnre
the number of revolutions, in other words the multiplier. Now as to the obtaining of the product, it is brought about by similar cogwheels, one under each opening at the right of the slide. But how is it that

Permit me to summarize by remarking that the

 theoretical principle of the machine is quite elementary and represents merely a technical realization of the rules which one always uses in numerical calculation.a tmink mat the arrangement on me macmue wiu
describe to you the process of carrying out a definite the way in whic
brings it about. multiplication.

The procedur One first sets the multiplicand, i.e the right, one Fig. 1. Belore the first turn.
 lever at the one cond at the ter multiplicand, etc. the multiplicand the first lever a lever at 1 ; all remain at zero turn the handle clockwise. The r pears under the openings of the slide, in our case a 2 in from the right, a 1 in the second, while zeros remain i Simultaneously, however, in the first of a series of openin the left, the digit 1 appears to indicate that we have tu once (Fig. 2). If now one has to do with a multiplier of on the handle as many times as this digit indicates; the mu be exhibited on the slide to the left, while the product wi slide to the right. How does the apparatus bring this r the first place there is attached to the under side of left, a cogwheel which carries, equally spaced on its

Elementary Mathemaics from An Advanced Standpoint Arithmetic - Algebra Analysis $0,1,2, \ldots, 9$. By means of a driver, this cogwheel is rotated through one tenth of its perimeter with every turn of the handle, so that a digit becomes visible through the opening in the slide, which actually indicates

Felix Klein
ne turning of the handle, one of these wheels, in the

Fig. 3.

the
 S. Accordingly, ration, when we start at the zero position, and nce, the units wheel must jump to 2, the ten's 12 appears. A second turn of the handle moves ther 2 and the tens wheel another 1 , so that 24 appears, and similarly, we get, after 3 or 4 times, $3 \cdot 12=36$ or $4 \cdot 12=48$, respectively.

