

Forensics, Mathematics And A CAS II

Patricia Leinbach Adams County Coroner, retired <u>accoroner@embarqmail.com</u>

Some Topics Mentioned in Part I

Height from Stride – Linear Regression

Blood Spatters - Geometry & Trigonometry

Accident Reconstruction- Equation Solving

DNA and Fingerprint Evidence – Probability & Statistics

Time Since Death – Exponential Regression and Numerical Approximation

GPS – Geometry and Systems of Equations

Other Related Topics of Interest

Identification of Physical Characteristics from Skeletal Evidence – Logic and Statistics

Forensic Decision Making – Analytical Hierarchical Ranking Process and Matrix Multiplication

Searching for a Serial Killers Home Base – Ranking, Probability, & Decision Making

Organizing an In Class Forensic Investigation

- Teams are best
 - 1. Ideal size 3-4 students
 - 2. Have a planning session at the "crime scene" to determine what evidence should be collected to take back to the "lab".
 - 3. Instructor is strictly a "guide", let students decide how to proceed.
- Allow all ideas to flow
 - 1. Do not let the mathematics dictate the method of analysis.
 - 2. Be open to different approaches.
 - 3. Remember, when you don't know what to do, you know what to do.
 - a. Identify variables
 - b. Identify relationships
 - c. Graph
 - 4. Do not be adverse to *empirical* methods, i.e. line of site as first attempt at a linear regression.
 - 5. Gently suggest improvements or alternatives.
- Make sure concepts are understood by student investigators
 - 1. Stress the mathematical idea behind the analytical method
 - 2. Explain why the method makes sense within the particular context
 - 3. Try out the method with a simple example that involves the application of the concept.
- Involve the use of the CAS.

What is the Role of the CAS?

It is a bridge

CAS

Mathematical Understanding

Problem Solution

Mathematical Understanding must be the shibboleth for crossing the bridge. Otherwise, we have an exercise in "button pushing." CAS is a tool, not the solution.

Some Examples of Solving Forensic Problems

Estimating Height From Stride Length

Blood Spatters

The Physics of the Formation of a Blood Spatter

Drawing a "blood spatter" in the CAS with $\alpha = 1$ radian

Estimating Time Since Death – Constant Ambient Temperature

Derive 6									
Ele Edit Insert Author Simplify Solve Calculus Options Window Help									
🖪 Algebra 1			2D-plot 1:1 Tracing expression #8						
#1:	time = [0, 0.25, 0.5, 0.75, 1, 1.25, 1.5]		1	X					
#Z:	temp = [34, 33.84, 33.67, 33.56, 33.33, 33, 32]	2	8	35.012	3	2	3	19	
#3:	diff = VECTOR(temp = 18.4, i, 1, 7)								
#4:	diff := [15.6, 15.44, 15.27, 15.16, 14.93, 14.6, 13.6]	а.	æ	30.01	20	1	0	⇒ ⊅	
#5:	A = [time, LN(diff)]'		8	25.008	1		œ		
	0.25 2.725890119	at.	¢	- 20.007	20				
#6:	A := 0.75 2.718660380 1 2.703372611			- 15.005	2	,	8		
	1.25 2.681021528 1.5 2.610069792	251	¢1	- 10.003	10	4	¢	20 20	
#7:	$APPROX(FIT([t, a_ + \alpha \cdot t], A)) = 2.761821081 - 0.07800012914 \cdot t$ $= 0.078 \cdot t$ $\Gamma(t) = 15.82 \cdot a$		æ	5.0017	3		æ		
#0.	$\Gamma(C) = 13.02.6$ + 10.4							×	
		10	-5	5	10	15	20	25	

Estimating Time Since Death – Variable Ambient Temperature

An Approximate Graphical Solution to the 2D GPS Problem

An Analytic Solution to the 2D GPS Problem Using A System of Nonlinear Equations

Derive 6 - [Algebra 1 Lost Child.dfw]							
📴 File Edit Insert Author Simplify Solve Calculus Options Window Help	_ & ×						
	_						
The speed of light in km/µsec	^						
#1: c := 0.299792458							
The time stamp on the receiving unit							
# 2: t ≔ [6.377871991, 6.299128190, 7.047192602]							
The three equations to be solved to locate the position of the receiver. All positions are given in kilometers							
#3. $(x - 0.1)^2 + (y - 0.2)^2 = c^2 \cdot (t - \delta)^2$							
#4: $(x + 0.3)^2 + (y - 0.1)^2 = c^2 \cdot (t - \delta)^2$	=						
#5: $(x - 0.2)^2 + (y + 0.2)^2 = c^2 \cdot (t_3 - \delta)^2$							
Using the Derive 6.1 solve command							
#6: $SOLVE\left[\left[(x - 0.1)^2 + (y - 0.2)^2 = c^2 \cdot (t - \delta)^2, (x + 0.3)^2 + (y - 0.1)^2 = c^2 \cdot (t - \delta)^2, (x - 0.2)^2 + (y + 0.2)^2 = c^2 \cdot (t - \delta)^2\right]$							
$\left[S \right]_{i}^{2} \left[x_{i}, y_{i}, S \right]$							
Note that there are two possible solutions to this set of equations. This is a result that there could be two values for δ . note that the second is the solution we found using the geometric method. Recall the position is given in kilometers, δ in µseconds.	We						
#7 : [x = 0.007232271700 \larkappa y = -0.1830929452 \larkappa \larkappa = 7.692664945, x = -0.09999999999 \larkappa y = 0.09999999999 \larkappa \larkappa = 5.631999999	1						
5 imp (#6) 😈 🕫).031s						

Conclusions

- 1. Many teenagers are interested in Forensics. Television fuels this interest.
- 2. Mathematics plays an important role in answering questions that arise in Forensic Investigations.
- 3. The basic mathematical concepts are easily understood and accessible to teenagers. Applying the techniques may be tedious and/or just beyond their reach.
- 4. The CAS can bridge the gap and hopefully evoke a "How'd they do that?" response within some students.
- 5. The CAS will never replace reasoning, but can definitely assist it.

Contact Us

Pat: <u>accoroner@embarqmail.com</u> Carl: leinbach@gettysburg.edu