$15^{\text {th }}$ International Conference
Applications of Computer Algebra

Teaching Principal Components Analysis with

 Minitab
Dr. Jaime Curts

The University of Texas Pan American
ACA 2009 to be held June 25-28, 2009
at École de Technologie Supérieure (ETS),
Université du Québec, Montréal, Québec, Canada

Introduction

The purpose of this presentation is to introduce the logical and arithmetic operators and simple matrix functions of Minitab® -a wellknown software package for teaching statistics- as a computer-aid to teach Principal Components Analysis (PCA) to graduate students in the field of Education.

PCA, originally proposed by Pearson (1901) is a mathematical technique -a vector space transform- that has its roots in linear algebra and in statistics.

Its main purpose is to reduce a correlated multidimensional data set to an uncorrelated lower dimensional space with maximum variance.

PCA concepts can be a roadblock for non-mathematical oriented students, since statistical definitions (i.e.,
 variance-covariance, correlation) need to be connected to matrix algebra (eigenvectors of a variance-covariance matrix) and to graphical vector representation (including matrix rotation).

- Given m points in a n dimensional space, for large n , how does one project on to a low dimensional space while preserving broad trends in the data and allowing it to be visualized?
- Choose a line that fits the data so the points are spread

Minitab - Untitled

ㅁ

Variable	Mean	StDev	Variance
X1	10.880	4.503	20.277
X2	10.680	4.905	24.060

Individual Value Plot of X1

Display Descriptive Statistics
Varibles:
${ }^{\text {x1x2 }}$
Descriptive Statistics - Statistics

@JCurts/2009

A sample of n observations in the 2-D space

Bivariate Observations
Variance $\mathrm{X} 1=20.3$, Variance $\mathrm{X} 2=24.1$
Covaraiance $(X 1, X 2)=15.6$

Goal: to account for the variation in a sample in as few variables as possible, to some accuracy

Formally, minimize sum of squares of distances to the line.

Why sum of squares? Because it allows fast minimization, assuming the line passes through 0

Minimizing sum of squares of distances to the line is the same as maximizing the sum of squares of the projections on that line, thanks to Pythagoras.

Y1 and Y2 are new coordinates.

$\cdot \mathrm{Y} 1$ represents the direction where the data values have the largest uncertainty. \bullet - 2 is perpendicular to Y 1 .

To find Y1 and Y2, we need to make transformation from X1 and X2. To simplify the discussion, we move the origin to $\left(\bar{x}_{1}, \bar{x}_{2}\right)$ and redefine the (X1,X2) coordinate as
$\mathrm{x} 1=\mathrm{X} 1-\bar{x}_{1} \quad, \mathrm{x} 2=\mathrm{X} 2-\bar{x}_{2} \quad$, so that the origin is $(0,0)$.
The relationship is illustrated in the following graph. We would like to present the data of a given lab, $p=(x 1, x 2)$ in terms of $p=(y 1, y 2)$.

From basic geometry relations, we see:
$\mathrm{y} 1=(\cos \theta) \times 1+(\sin \theta) \times 2$
$y 2=(-\sin \theta) \times 1+(\cos \theta) \times 2$

The angle θ is determined so that the observations along the Y 1 axis has the largest variability.
y2

Minitab－Untitled

| \square |
| :--- | :--- | :--- |

Eile Edit Dąta Calc Stat Graph Edditor Iools Window Help Calculator x

Descriptive Statistics： $\mathrm{X} 1, \mathrm{X} 2, \mathrm{Z} 1, \mathrm{Z2}, \mathrm{Y} 1$ with thet， Y 1 with thet，．．．

Variable	N	N *	Mean	StDev	Variance
X1	25	0	10.880	4.503	20.277
X2	25	0	10.680	4.905	24.060
Z1	25	0	0.000	1.000	1.000
Z2	25	0	0.000	1.000	1.000
Y1 with theta $=5$	25	0	-7.155	3.909	15.277
Y1 with theta $=10$	25	0	-14.94	5.97	35.62
Y1 with theta $=45$	25	0	14.80	6.08	36.95
Y1 $=$ theta $=90$	25	0	4.673	3.289	10.814

四ACA data one．MTW＊＊＊

\downarrow	C1	C2	C3	C4	C5	C6	C7	C8	C9	C10	C11	C12	C13	C14	C15＊
	X1	X2	Z1	Z2	Y 1 with theta $=5$	Y 1 with theta $=10$	Y 1 with theta $=45$	$\mathrm{Y} 1=$ theta $=90$							
16	13	6	0.47080	－0．95411	－2．0659	－14．1721	11.9346	－0．46098							
17	13	14	0.47080	0.67685	－9．7373	－18．5242	18.7418	6.69100							
18	13	15	0.47080	0.88072	－10．6963	－19．0682	19.5927	7.58499							
19	13	17	0.47080	1.28846	－12．6141	－20．1563	21.2945	9.37299							
20	14	7	0.69288	－0．75024	－2．7412	－15．5551	13.3108	－0．01505							
21	15	13	0.91495	0.47298	－8．2111	－19．6583	18.9416	4.90085							I
22	17	13	1.35911	0.47298	－7．6438	－21．3365	19.9922	4.00471							
23	17	17	1.35911	1.28846	－11．4795	－23．5126	23.3958	7.58069							
24	18	19	1.58118	1.69619	－13．1136	－25．4397	25.6230	8.92061							
25	20	20	2.02533	1.90006	－13．5052	－27．6619	27.5245	8.91846							

Boxplot of Stack data

For any given value of theta, then, it is a simple matter to work out the values of Y 1 for each of our twenty observations. When θ is 5 degrees, for example, the calculations are:

		New Variable	
Z1	Z2	Y1	
1.90	0.47	1.94	
0.99	0.85	1.06	Mean (X1) = 7.65; VAR (X1) = 19.23
1.22	0.09	1.22	Mean (Z1) = Mean (Z2) = 0;
0.54	-0.68	0.47	Variance (Z1) = Variance (Z2) =
0.31	0.47	0.35	
0.08	-1.25	-0.03	
-0.15	-0.30	-0.17	$\operatorname{VAR}(\mathrm{Y} 1)=(\cos \theta) \times 1+(\sin \theta) \times 2=1.12$
-0.60	0.09	-0.59	
-1.06	-1.63	-1.20	
-1.29	-1.25	-1.39	Note that each of the original variables has a variance
-1.74	-1.63	-1.88	of 1.0, but the variance of the new axis is 1.12, which
-1.52	-1.06	-1.60	constitutes more than half of the total variance for the
0.76	0.47	0.80	entire dataset (e.g., 1.12/2.00 or 56\%).
1.90	2.57	2.12	
0.31	0.28	0.33	
-0.38	-0.10	-0.38	
-0.15	0.66	-0.09	
-0.15	0.85	-0.07	
-0.38	0.66	-0.32	
-0.60	0.47	-0.56	

Each value of theta will yield a different set of scores on Y1, and will also result in distinct values for the variance term. If we calculate transformed values and variances for different values of theta, we can compare the variance of the new axis to the total for our dataset.

Note that as we increase the
angle, the new variable accounts for an increasing fraction of total variance, until 45 degrees, and then declines; by the time theta is 90 degrees, the new axis is equivalent to X 2 , and, not surprisingly, its proportion of variance is back to 1.00 or 50.0\%.

Theta	Var (Y1)	Proportion
5	1.121	56.0\%
10	1.238	61.9\%
15	1.348	67.4\%
20	1.447	72.4\%
25	1.533	76.7\%
30	1.603	80.1\%
35	1.654	82.7\%
40	1.685	84.3\%
45	1.696	84.8\%
50	1.685	84.3\%
55	1.654	82.7\%
60	1.603	80.1\%
65	1.533	76.7\%
70	1.447	72.4\%
75	1.348	67.4\%
80	1.238	61.9\%
85	1.121	56.0\%
90	1.000	50.0\%

Note that this time, the variance term is much smaller than that of the each of the original variables. But the variances of the two new axes sum to 2.0 -- the total variation in the original dataset. This is the basic approach of principal components analysis: obtaining linear combinations of variables into new axes, such that the first one accounts for the largest share of total variance, the second is orthogonal to the first and accounts for less variance, etc. Several properties hold for these components@JCurts/2009

The transformation from $(x 1, x 2)$ to $(\mathrm{y} 1, \mathrm{y} 2)$ results several nice properties

1. The variability along y1 is largest.
2. Y 1 and y 2 are uncorrelated, that is, orthogonal.
3. The confidence region based on ($\mathrm{y} 1, \mathrm{y} 2$) is easy to construct, and provide useful interpretations of the two sample plots.
Questions remain unanswered are
4. How to determine the angle θ so that the variability of observations along the y1 axis is maximized?
5. How to construct the ellipse for confidence region with different levels of confidences?
6. How to interpret the two-sample plots?
\checkmark How to determine the Y 1 and Y 2 axis so that the variability of observations along the Y 1 axis is maximized and Y 2 is orthogonal to Y 1 ?
\checkmark Rewrite the linear relation between $(\mathrm{Y} 1, \mathrm{Y} 2)$ and ($\mathrm{x} 1, \mathrm{x} 2$) in matrix notation:

$$
\begin{aligned}
& Y 1=(\cos \theta) \times 1+(\sin \theta) \times 2 \\
& Y 2=(-\sin \theta) \times 1+(\cos \theta) \times 2
\end{aligned}
$$

$$
Y=\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right]=\left[\begin{array}{c}
(\cos \theta) x_{1}+(\sin \theta) x_{2} \\
(-\sin \theta) x_{1}+(\cos \theta) x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
A_{1}^{\prime} X \\
A_{2}^{\prime} X
\end{array}\right]=A X
$$

NOTE: X is bivariate , so is Y , and

$$
\mathrm{V}(\mathrm{X})=\left[\begin{array}{cc}
V\left(x_{1}\right) & \operatorname{Cov}\left(x_{1}, x_{2}\right) \\
\operatorname{Cov}\left(x_{1}, x_{2}\right) & V\left(x_{2}\right)
\end{array}\right]
$$

$$
V(Y)=A^{\prime} V(X) A=\left[\begin{array}{ll}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right]
$$

λ_{1} and λ_{2} are called the eigen values. Which are the solutions of
$|V(X)-\lambda I|=0$ And, $\mathrm{V}(\mathrm{Y} 1)=\lambda_{1}, \mathrm{~V}(\mathrm{Y} 2)=\lambda_{2}$, Correlation between Y 1 and $\mathrm{Y} 2=0$.
λ_{1} and λ_{2} are called the eigen values. Which are the solutions of And, $\mathrm{V}(\mathrm{Y} 1)=\lambda_{1}, \mathrm{~V}(\mathrm{Y} 2)=\lambda_{2}$, Correlation between Y 1 and $\mathrm{Y} 2=0$.

The angle $\theta=(.5) \arctan \left(\frac{2 \rho \sigma_{1} \sigma_{2}}{\sigma_{1}^{2}-\sigma_{2}^{2}}\right)$
if $\quad \sigma_{1} \neq \sigma_{2}$
when $\sigma_{1}=\sigma_{2}, \theta=45^{\circ}$ The angle $\theta=\arctan \left(\frac{\lambda_{1}-\sigma_{1}^{2}}{\rho \sigma_{1} \sigma_{2}}\right)$
Note the angle depends on the correlation between X1 and X2, as well as, on the variances of X1 and X2, respectively.

- When ρ is close to zero, the angle is also close to zero. If $\mathrm{V}(\mathrm{X} 1)$ and $\mathrm{V}(\mathrm{X} 2)$ are close, then, the scatter plots are scattered like a circle. That is, there is no clear major principal component.
-When ρ is close to zero and $\mathrm{V}(\mathrm{X} 1)$ is much larger than $\mathrm{V}(\mathrm{X} 2)$, then, the angle will be close to zero, and the data points are likely to be parallel to the X -axis. On the other hand, if $\mathrm{V}(\mathrm{X} 1)$ is much smaller than $\mathrm{V}(\mathrm{X} 2)$, the angle will be close to 90°, and the data points will be more likely parallel to the Y -axis.

Consider, now, we actually observe the following two sample data:
The sample means are given by $\left[\begin{array}{l}\bar{x}_{1} \\ \bar{x}_{2}\end{array}\right]$
The sample variance-covariance matrix is given by

r is the Pearson's correlation coefficient, and S^{2} is the sample variance. S is the sample standard deviation.
$\mathrm{V}(\mathrm{Y})$ is the solution of

$$
|\hat{V}(X)-\lambda I|=0
$$

The solutions for λ are given by

NOTE: $\mathrm{V}(\mathrm{Y} 1)+\mathrm{V}(\mathrm{Y} 2)=\lambda_{1}+\lambda_{2}=\mathrm{s}_{\mathrm{i}}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{V}(\mathrm{X} 1)+\mathrm{V}(\mathrm{X} 2)$

Using the sample data, the angle is estimated by

$$
\begin{aligned}
\theta= & (.5) \arctan \left(\frac{2 r s_{1} s_{2}}{s_{1}^{2}-s_{2}^{2}}\right) \\
& =\arctan \left(\frac{\lambda_{1}-s_{1}^{2}}{r s_{1} s_{2}}\right)
\end{aligned}
$$

Correlation and Covariance Matrix

Minitab - Untitled

File Edit Dagta Calc Stat Graph Editor Iools Window Help

Boxplot of Stack data print

Data Display

Matrix CORR1

1.00000	0.70560

$0.70560 \quad 1.00000$
｜Matrix COVA1
$20.2767 \quad 15.585$
$15.5850 \quad 24.060$

Matrix M3
$0.663139 \quad 0.748496$
$0.748496-0.663139$

Principal Component Analysis：X1，X2
Eigenanalysis of the Covariance Matrix

| | | |
| :--- | :--- | :--- | :--- |
| Eigenanalysis of the Copal | | |
| | | |
| Eigenvalue | 37.868 | 6.469 |
| Proportion | 0.854 | 0.146 |
| Cumulative | 0.854 | 1.000 |
| | | |
| | | |
| Variable | PC1 | PC |
| XI | 0.663 | 0.748 |
| X2 | 0.748 | -0.663 |

| | | |
| :--- | :--- | :--- | :--- |
| Eigenanalysis of the Copal | | |
| | | |
| Eigenvalue | 37.868 | 6.469 |
| Proportion | 0.854 | 0.146 |
| Cumulative | 0.854 | 1.000 |
| | | |
| | | |
| Variable | PC1 | PC |
| XI | 0.663 | 0.748 |
| X2 | 0.748 | -0.663 |

| | | |
| :--- | :--- | :--- | :--- |
| Eigenanalysis of the Copal | | |
| | | |
| Eigenvalue | 37.868 | 6.469 |
| Proportion | 0.854 | 0.146 |
| Cumulative | 0.854 | 1.000 |
| | | |
| | | |
| Variable | PC1 | PC |
| XI | 0.663 | 0.748 |
| X2 | 0.748 | -0.663 |

| | | |
| :--- | :--- | :--- | :--- |
| Eigenanalysis of the Copal | | |
| | | |
| Eigenvalue | 37.868 | 6.469 |
| Proportion | 0.854 | 0.146 |
| Cumulative | 0.854 | 1.000 |
| | | |
| | | |
| Variable | PC1 | PC |
| XI | 0.663 | 0.748 |
| X2 | 0.748 | -0.663 |

| | | |
| :--- | :--- | :--- | :--- |
| Eigenanalysis of the Copal | | |
| | | |
| Eigenvalue | 37.868 | 6.469 |
| Proportion | 0.854 | 0.146 |
| Cumulative | 0.854 | 1.000 |
| | | |
| | | |
| Variable | PC1 | PC |
| XI | 0.663 | 0.748 |
| X2 | 0.748 | -0.663 |

－

Minitab－Untitled

File Edit Dąta Calc Stat Graph Edgitor Iools Window Help

Scatterplot of C14 vs C15

Pearson correlation of C14 and C15 $=\mathbf{- 0 . 0 0 0}$

Thanks.

jbcurts@utpa.edu

