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We solve systems of multivariate polynomial equations in order to under-

stand flexibility of three dimensional objects, including molecules.

Protein flexibility is a major research topic in computational chemistry.

In general, a polypeptide backbone can be modeled as a polygonal line whose

edges and angles are fixed while some of the dihedral angles can vary freely. It

is well known that a segment of backbone with fixed ends will be (generically)

flexible if it includes more than six free torsions. Resultant methods have

been applied successfuly to this problem, see [3], [4].

In this work we focus on non-generically flexible structures (like a geo-

desic dome) that are rigid but become continuously movable under certain

relations. The subject has a long history: Cauchy (1812), Bricard (1896),

Connelly (1978).

In our previous work [8], we began a new approach to understanding

flexibility, using not numeric but symbolic computation. We describe the

geometry of the object with a set of multivariate polynomial equations, which

we solve with resultants. Resultants were pioneered by Bezout, Sylvester,

Dixon, and others. The resultant appears as a factor of the determinant

of a matrix containing multivariate polynomials. Given the resultant, we

described [8] an algorithm Solve that examines it and determines relations

for the structure to be flexible. We discovered in this way the conditions of

flexibility for an arrangement of quadrilaterals in Bricard [1], which models



molecules. Here we significantly extend the algorithm and the molecular

structures.

0.1 First new result

We have now analyzed Bricard’s original formulation of the quadrilaterals

problem [1] in terms of three quadratic equations, with fifteen parameters

and three variables. The resultant of this system has 5685 terms. The flexibil-

ity searching algorithm is more subtle now, and we have modified algorithm

Solve to include these cases, with great success. We have discovered an ap-

parently new flexible arrangement, which can be viewed at [10]. Although

the physically meaningful flexible conformations of the cyclohexane are well

known (“chair” versus “boat”), this appears to be the first fully algebraic

approach for their derivation, as well as for deriving Bricard’s flexible oc-

tahedra. Moreover, the identical set of equations arises in other contexts,

and a variant gives the conformational equations of a protein or nucleic acid

backbone [3] [4].

0.2 Second new result

Next we consider the cylo-octane molecule, pictured in figure 1.

Chemically relevant solutions fix the (bond) angles between the paler

lines, introducing four constraint equations in the variables τi. To save space,

we show one equation here; the other three are similar.
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Here τi = tan(zi/2), tβ = tan(β/2), and tαi = tan(αi/2).

We use the Dixon resultant to eliminate τ2, τ3, and τ4. An important

special case is when the basic quadrilateral (heavy black lines) is planar.

II



Fig. 1. Geometry of Octane Molecule.

The equations then simplify quite a bit, and we can describe all the solutions

of this case. The Dixon matrix is 24×24. 57% of the entries are 0. On average

there are 41 terms per entry. The Dixon-EDF method [9] takes 3 minutes 38

seconds to compute the resultant for τ1, which has 21715 terms. It is degree

32 in τ1 but has only even degree terms.

In the general case (three dimensional space) we have also made signif-

icant progress. The Dixon matrix is 64 × 64. 64% of the entries are 0. On

average there are 107 terms per entry. The determinant of the Dixon matrix

here, were it ever computed, would have many billions of terms. But our

Dixon-EDF techniques [9] discover its hundreds of factors in about 67 hours

of CPU time. The largest has 4872161 terms. Using some of these factors,

we have verified some known chemical arrangements. We seem to have found

new interesting flexible cases. Work is ongoing.
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